Approximation of Continuous Functions by Polynomials with Integral Coefficients

George D. Andria
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
Communicated by Oved Shisha

Received January 20, 1969 ; revised March 8, 1970

INTRODUCTION

Let $Q(Z)$ be the set of all polynomials with integral coefficients, let $-\infty<a<b<\infty$, let $C(a, b)$ denote the set of all real valued continuous functions defined on $[a, b]$, and let $f \in C(a, b)$ be arbitrary but fixed.

Definition 1. (a) f is approximable on $[a, b]$ if and only if for each $\eta>0$ there exists a $Q \in Q(Z)$ such that $|f(x)-Q(x)|<\eta$ for all $x \in[a, b]$.
(b) f is matchable on a set S if and only if $S \subseteq[a, b]$, and there exists a $Q \in Q(Z)$ such that $f(x)=Q(x)$ for all $x \in S$.
(c) For each $g \in C(a, b)$, define $\|g\|=\max _{a \leqslant x \leqslant b}|g(x)|$.
(d) Let $U(a, b)=\{Q \mid Q \in Q(Z), 0 \leqslant Q(x)<1$ for all x in $[a, b], Q \neq 0\}$. If $U(a, b) \neq \phi$, then let $J(a, b)=\{x \mid x \in[a, b], Q(x)=0$ for all $Q \in U(a, b)\}$ and call the points of $J(a, b)$ critical points of $[a, b]$.

The general question to be investigated can be stated as follows: does there exist a $Q_{0} \in Q(Z)$ such that $\left\|f-Q_{0}\right\| \leqslant\|f-Q\|$ for all $Q \in Q(Z)$?; such a Q_{0} would be called a best approximation to f on $[a, b]$. In this paper, results concerning (1) the existence of Q_{0}, (2) the uniqueness of Q_{0}, (3) the construction of Q_{0}, and (4) the magnitude of $\left\|f-Q_{0}\right\|$ will be developed.

The related topic of the existence of arbitrarily good approximations to f by elements of $Q(Z)$ has a rather long history. The problem was first raised by J. Pál [11] for the case in which $[a, b]=[-\alpha, \alpha],|\alpha|<1$. He has shown that $f(0)=$ an integer is a necessary and sufficient condition for the approximability of f on $[-\alpha, \alpha]$. S. Kakeya [8] studied the problem for the interval [$-1,1]$, and Fekete and Lukács (in 1916, unpublished; see [3]) considered the problem for arbitrary intervals [a, b]. Y. Okada [10], S. N. Bernstein [2], L. Kantorovič [9], M. Fekete [3, 4, 5, and 6], I. Yamamoto [12], E. Hewitt
and H. Zuckerman [7], and G. Andria [1] have also studied this problem and related ones.

Several known results will now be stated for later reference:
(a) Let $U(a, b) \neq \phi$; then $J(a, b)$ is finite. Furthermore, f is approximable on $[a, b]$ if and only if it is matchable on $J(a, b)$ ([7], Theorem 2.6).
(b) If $b-a \geqslant 4$, then f is approximable if and only if it coincides on $[a, b]$ with an element of $Q(Z)$ ([3], Theorem 1). If $b-a<4$, then $U(a, b)$ is nonvoid (follows from [5], Theorem XIV), $J(a, b)$ is an n-point set ($n \geqslant 0$) and f is approximable if and only if the unique polynomial of degree $n-1$ matching f on $J(a, b)$ has integral coefficients ([7], Theorem 4.3). (The unique polynomial of degree -1 is 0 .)
(c) Let $J^{\prime}(a, b)$ be the set of zeros of the polynomials $Q^{*} \in Q(Z)$ having leading coefficient one and all their zeros in $[a, b]$.
(d) If $b-a<4$, then $J(a, b)=J^{\prime}(a, b)$ ([7], 3.10).
(e) Let $-2 \leqslant a<b \leqslant 2$. Then $J^{\prime}(a, b)=(\{-2,2\} \cap[a, b]) \cup\left(\cup^{\prime} T_{k}\right)$, where U^{\prime} is the union over all k such that $k \geqslant 3, x_{1 k} \leqslant b, x_{\ell k} \geqslant a$ and

$$
\ell=\left\{\begin{array}{ll}
\frac{k-1}{2} & \text { if } k \text { is odd } \\
\frac{k-2}{2} & \text { if } k \equiv 0(\bmod 4), \\
\frac{k-4}{2} & \text { if } k \equiv 2(\bmod 4)
\end{array} \quad T_{k}=\{2 \cos (2 \pi j / k) \mid 0 \leqslant j \leqslant k / 2, \quad(j, k)=1\},\right.
$$

$x_{i j}=2 \cos (2 \pi i / j)$. ([7], 5.5).
(f) Let $\gamma=[a]+2$. Then if $b-\gamma \leqslant 2$, we obtain $J^{\prime}(a, b)$ upon translating $J^{\prime}(a-\gamma, b-\gamma)$ by γ; that is, $J^{\prime}(a, b)=J^{\prime}(a-\gamma, b-\gamma)+\gamma$. Since $J^{\prime}(a-\gamma, b-\gamma)$ is identified in (e) above, $J^{\prime}(a, b)$ is identified in this case [7, 5.7].

Approximable Functions and Best Approximations

A fundamental relationship between approximable functions and best approximations is clearly demonstrated in the following theorem:

Theorem 1. If f is approximable on $[a, b]$, then either $f \in Q(Z)$ or there does not exist a best approximation to f on $[a, b]$.

Proof. Suppose f is not in $Q(Z)$ but is approximable on $[a, b]$. Assume there exists a best approximation, Q_{0}, to f on $[a, b]$. Choose $x_{0} \in[a, b]$ such
that $f\left(x_{0}\right) \neq Q_{0}\left(x_{0}\right)$, and let $\eta=\frac{1}{2}\left|f\left(x_{0}\right)-Q_{0}\left(x_{0}\right)\right|>0$. Then for any $Q \in Q(Z),\|f-Q\| \geqslant\left\|f-Q_{0}\right\| \geqslant\left|f\left(x_{0}\right)-Q_{0}\left(x_{0}\right)\right|>\eta>0$. This, however, contradicts the approximability of f on $[a, b]$.

The construction of an approximable function from an arbitrary given continuous function is now considered.

Theorem 2. Let $b-a<4$ and let $L(x)$ be the Lagrange interpolation polynomial to f in $J(a, b)$. (For $J(a, b)=\phi$, set $L(x) \equiv 0$.) Then $g(x) \equiv$ $f(x)-L(x)$ is approximable on $[a, b]$.

Proof. $g(x)=0$ for all $x \in J(a, b)$. Thus, $g(x)$ is matchable on $J(a, b)$ and, hence, approximable on $[a, b]$.

If L of Theorem 2 is replaced by any function $\ell \in C(a, b)$ such that $\ell(x)=f(x)$ for all $x \in J(a, b)$, then $f-\ell$ is also approximable on $[a, b]$.

Theorem 3. Let $b-a<4$. Then f is approximable on $[a, b]$ if and only if L is approximable on $[a, b]$.

This follows at once from Theorem 2.
An immediate consequence of result (b) above is that if $b-a<4$, then $f(x)$ is approximable if and only if $L(x)$ has integral coefficients. Thus, if $b-a<4$ and if there exists a sequence $\left\{Q_{i}\right\}$ such that $Q_{i} \in Q(Z)$ and $\left\|Q_{i}-L\right\| \rightarrow 0$ as $i \rightarrow \infty$, then $L \in Q(Z)$.

On Best Approximations

Theorem 4. A best approximation to a continuous function is, in general, not unique.

Proof. Let $[a, b]=[0,1], f(x)=-x+\frac{1}{2}, Q_{1}(x)=0$, and $Q_{2}(x)=2 f(x)$. Then $\left\|f-Q_{1}\right\|=\left\|f-Q_{2}\right\|=\frac{1}{2}$. Now let $Q(x)=\sum_{i=0}^{n} a_{i} x^{i}$ be any polynomial with integral coefficients. Then $\| f-Q\left|\geqslant\left|f(0)-\sum_{i=0}^{n} a_{i} 0^{i}\right|=\right.$ $\left|\frac{1}{2}-a_{0}\right| \geqslant \frac{1}{2}$, since a_{0} is an integer. Hence, both Q_{1} and Q_{2} are best approximations to f on [0, 1].

The question of existence of best approximations cannot be answered as easily as that of uniqueness. However, some insight into the existence problem can be achieved by studying the question: If Q is an approximation to f, what general procedures could be used to hopefully improve upon Q ? The following theorem and its proof contain an indication in this direction.

Theorem 5. Suppose $b-a<4, J(a, b) \neq \phi$; let Q be an arbitrary element of $Q(z)$, and set $\mu=\max _{J(a, b)}|f(x)-Q(x)|$. Then, for each $\eta>0$, there exists a polynomial P_{n} in $Q(Z)$ such that $\left\|f-P_{n}\right\|-\eta \leqslant \mu$.

Proof. Let $\eta>0$ be arbitrary but fixed. Define a function $G(x)$ as follows: (1) $G(x)=f(x)-Q(x)$ throughout $E=\{x| | f(x)-Q(x) \mid \geqslant \mu+(\eta / 2)\}$, (2) $G(x)=0$ throughout $E_{0}=J(a, b) \cup\{x \mid f(x)-Q(x)=0\}$, and (3) $G(x)$ is linear on each of the disjoint intervals whose union is $E^{*}=[a, b]-E_{0}-E$. By a proper definition in (3), G will be continuous in $[a, b]$. Also, if x belongs to $[a, b]-E$, then $f(x)-Q(x)$ and $G(x)$ have the same sign; hence $|f(x)-Q(x)-G(x)| \leqslant \max \{|f(x)-Q(x)|,|G(x)|\} \leqslant \mu+(\eta / 2)$. Also, G is matchable on $J(a, b)$ and thus approximable on $[a, b]$; hence, there exists Q_{η} in $Q(Z)$ such that $\left\|G(x)-Q_{\eta}(x)\right\|<\eta / 2$. Therefore,

$$
\begin{aligned}
\left\|f(x)-\left(Q_{\eta}(x)+Q(x)\right)\right\| & \leqslant\|f(x)-Q(x)-G(x)\|+\left\|G(x)-Q_{\eta}(x)\right\| \\
& <\mu+(\eta / 2)+\eta / 2=\mu+\eta
\end{aligned}
$$

Theorem 5 shows that if $\mu<\|f-Q\|$, there exists a better approximation to f in $Q(Z)$. This theorem will also be used to prove the following:

Theorem 6. Let $b-a<4, f \notin Q(Z)$, and let Q_{0} be a best approximation to f. Then: (1) f is not approximable on $[a, b]$; (2) $\max _{J(a, b)}\left|f(x)-Q_{0}(x)\right|=$ $\left\|f-Q_{0}\right\|$.

Proof. (1) follows from Theorem 1. Also, by Theorem 2, $J(a, b) \neq \phi$. By Theorem 5, for each $\eta>0$ there exists some P_{η} in $Q(Z)$ such that $\left\|f-P_{\eta}\right\|-\eta \leqslant \max _{(a, b)}\left|f(x)-Q_{0}(x)\right|$. Hence, $\left\|f-Q_{0}\right\| \leqslant\left\|f-P_{\eta}\right\| \leqslant$ $\max _{J(a, b)}\left|f(x)-Q_{0}(x)\right|+\eta$. Since $\eta>0$ is arbitrary,

$$
\left\|f-Q_{0}\right\|=\max _{J(a, b)}\left|f(x)-Q_{0}(x)\right|
$$

Theorem 6 identifies some of the points of maximum deviation of a best approximation: a best approximation assumes its maximum deviation from f on some subset of the set of critical points of the interval. In addition, this theorem can sometimes be used to determine that a particular approximation is not best.

Theorem 7. Let $b-a<4$ and suppose f is not approximable on $[a, b]$. Then there exists an $\eta_{0}>0$ such that for every Q in $Q(Z),|f(x)-Q(x)|>\eta_{0}$ for some x in $J(a, b)$.

Proof. Since f is not approximable on $[a, b]$, there exists an $\eta^{\prime}>0$ such that for each Q in $Q(Z),|f(x)-Q(x)|>\eta^{\prime}$ for some x in $[a, b]$. Assume that for each $\eta>0$ there exists Q_{η} in $Q(Z)$ such that $\left|f(x)-Q_{\eta}(x)\right| \leqslant \eta$ for all x in $J(a, b)$. Take $\eta=\eta^{\prime} / 2$. By Theorem 5, there exists P_{η} in $Q(Z)$ such that $\left\|f-P_{n}\right\|-\eta \leqslant \max _{J(a, b)}\left|f(x)-Q_{\eta}\right| \leqslant \eta$. Thus $\left\|f-P_{n}\right\| \leqslant 2 \eta=\eta^{\prime}$; but this contradicts the first part of the proof.

THEOREM 8. There exists an $[a, b]$ with $b-a<4$, and an f belonging to $C(a, b)$ such that f is not approximable on $[a, b]$, and such that there does not exist a best approximation to f on $[a, b]$.

Proof. Define functions f, g on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ by

$$
g(x)= \begin{cases}\frac{1}{1+x} & \text { for } x \in\left[0, \frac{1}{2}\right] \\ \frac{1}{1-x} & \text { for } x \in\left[-\frac{1}{2}, 0\right]\end{cases}
$$

and $f(x)=g(x)-\left(\frac{1}{4}\right)$. Since $J\left(-\frac{1}{2}, \frac{1}{2}\right)=\{0\}[7$, p. 317, 5.5 Theorem] and $g(0)=1, g(x)$ is approximable on $\left[-\frac{1}{2}, \frac{1}{2}\right]$. By Theorem $3, f$ is not approximable there. Suppose there exists a best approximation Q_{0} to f on $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Since g is approximable, for each $\eta>0$ there exists Q_{η} in $Q(Z)$ such that $\left|g(x)-Q_{\eta}(x)\right|=\left|f(x)+\frac{1}{4}-Q_{\eta}(x)\right|<\eta$ throughout $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Hence, for every $\eta>0,\left\|f-Q_{0}\right\| \leqslant\left\|f-Q_{n}\right\|<\eta+\left(\frac{1}{4}\right)$, and so, $\left\|f-Q_{0}\right\| \leqslant \frac{1}{4}$. Since $f(0)=\frac{3}{4}$, we must have $Q_{0}(0)=1$; consequently, $\left\|f-Q_{0}\right\|=\frac{1}{4}$.

There exists a nondegenerate interval $[-d, d] \subseteq\left[-\frac{1}{2}, \frac{1}{2}\right]$ such that in each of $[-d, 0],[0, d]$ exactly one of the following holds: (1) Q_{0} is constant, (2) Q_{0} is strictly increasing, (3) Q_{0} is strictly decreasing. However, since f is strictly decreasing on $\left[0, \frac{1}{2}\right], Q$ is strictly decreasing on $[0, d]$ since in all other cases we would have, throughout $[0, d]$,

$$
\left|f(x)-Q_{0}(x)\right|>\left|f(0)-Q_{0}(0)\right|=\frac{1}{4}
$$

which would contradict the equality $\left\|f-Q_{0}\right\|=\frac{1}{4}$. Similarly, Q_{0} is strictly increasing on $[-d, 0]$. Hence, Q_{0} has a relative maximum at $x=0$. There exists an $h, 0<h \leqslant d$, such that throughout $(0, h)$ we have $-\frac{1}{2} \leqslant Q_{0}{ }^{\prime}(x) \leqslant 0$ and $-1 \leqslant f^{\prime}(x)=-1 /(1+x)^{2} \leqslant-\frac{3}{4}$. Thus, throughout $(0, h)$,

$$
\left(Q_{0}(x)-f(x)\right)^{\prime}>0
$$

and therefore $\left\|f-Q_{0}\right\| \geqslant Q_{0}(h)-f(h)>Q_{0}(0)-f(0)=\frac{1}{4}$, contradicting the equality $\left\|f-Q_{0}\right\|=\frac{1}{4}$.

References

1. G. Andria, On Integral Polynomial Approximation, thesis, St. Louis University, 1968.
2. S. N. Bernstein, Sobranie Sočinenii I, Izdatel'stvo Akademiĭ Nauk SSSR, 468-471, 517-519, 1952.
3. M. Fekrte, Approximations par polynomes avec conditions diophantiennes, C. R. Acad. Sci. Paris 239 (1954), 1337-1339, 1455-1457; (published in greater detail in Hebrew: Riveon Lematematika 9 (1955), 1-12, Jerusalem, Israel, with an English summary).
4. M. Fekete, Über den transfiniten Durchmesser ebener Punktmengen, Math. Z. 32 (1930), 108-114, 215-221; 37 (1933), 635-646.
5. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
6. M. Fekete, Über die Wertverteilung bei ganzzahligen Polynomen, Math. Z. 31 (1930), 521-526.
7. E. Hewitt and H. S. Zuckerman, Approximation by polynomials with integral coefficients, a reformulation of the Stone-Weierstrass theorem, Duke Math. J. 26 (1959), 305-324.
8. S. Kakeya, On Approximate Polynomials, Tôhoku Math. J. 6 (1914-1915), 182-186.
9. L. V. Kantorovič, Neskol'ko zamečaniĭ o približenii k funkciyam posredstvom polinomov s celymi koefficientami, Izv. Akad. Nauk SSSR (Otdel. mat. i est. Nauk) (1931), 1163-1168.
10. Y. Okada, On approximate polynomials with integral coefficients only, Tôhoku Math. J. 23 (1923), 26-35.
11. J. Pál, "Zwei kleine Bemerkungen," Tôhoku Math. J. 6 (1914-1915), 42-43.
12. I. Yamamoto, A remark on approximate polynomials and Eine Bemerkung über algebraische Gleichungen, Tôhoku Math. J. 33 (1931), 21-25.
