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INTRODUCTION

Let Q(Z) be the set of all polynomials with integral coefficients, let
- 00 < a < b < 00, let qa, b) denote the set of all real valued continuous
functions defined on [a, b], and letfE qa, b) be arbitrary but fixed.

DEFINITION 1. (a) I is approximable on [a, b] if and only if for each
Yj > 0 there exists a Q E Q(Z) such that I f(x) - Q(x) I < Yj for all x E [a, b].

(b) fis matchable on a set S if and only if S C [a, b], and there exists a
Q E Q(Z) such thatf(x) = Q(x) for all XES.

(c) For each g E C(a, b), define II g II = maxa";;x";;b Ig(x)l.

(d) Let V(a, b) = {Q I Q E Q(Z), 0 ,s;: Q(x) < 1 for all x in [a, b), Q =1= O}.
If V(a, b) =1= ep, then let lea, b) = {x I x E [a, b], Q(x) = 0 for all Q E V(a, b)}
and call the points of lea, b) critical points of [a, b].

The general question to be investigated can be stated as follows: does
there exist a Qo E Q(Z) such that III - Qo II ,s;: IIf - Q II for all Q E Q(Z)?;
such a Qo would be called a best approximation to f on [a, b]. In this paper,
results concerning (1) the existence of Qo , (2) the uniqueness of Qo , (3) the
construction of Qo, and (4) the magnitude of [If - Qo II will be developed.

The related topic of the existence of arbitrarily good approximations to
fby elements of Q(Z) has a rather long history. The problem was first raised
by J. Pal [11] for the case in which [a, b] = [- ex, ex], I ex I < 1. He has shown
thatf(O) = an integer is a necessary and sufficient condition for the approxi
mability ofI on [-ex, ex]. S. Kakeya [8] studied the problem for the interval
[-1, 1], and Fekete and Lukacs (in 1916, unpublished; see [3]) considered
the problem for arbitrary intervals [a, b]. Y. Okada [10], S. N. Bernstein [2],
L. Kantorovic [9], M. Fekete [3,4,5, and 6], I. Yamamoto [12], E. Hewitt
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and H. Zuckerman [7], and G. Andria [1] have also studied this problem
and related ones.

Several known results will now be stated for later reference:

(a) Let U(a, b) =1= 1>; then J(a, b) is finite. Furthermore, f is approxi
mable on [a, b] if and only if it is matchable on J(a, b) ([7], Theorem 2.6).

(b) If b - a ~ 4, then f is approximable if and only if it coincides
on [a, b] with an element of Q(Z) ([3], Theorem 1). If b - a < 4, then
U(a, b) is nonvoid (follows from [5], Theorem XIV), J(a, b) is an n-point
set (n ~ 0) and f is approximable if and only if the unique polynomial of
degree n - I matchingfon J(a, b) has integral coefficients ([7], Theorem 4.3).
(The unique polynomial of degree -1 is 0.)

(c) Let JI(a, b) be the set of zeros of the polynomials Q* E Q(Z) having
leading coefficient one and all their zeros in [a, b].

(d) If b - a < 4, then J(a, b) = pea, b) ([7],3.10).

(e) Let -2 ~ a < b ~ 2. Then pea, b) = ({ -2, 2} n [a, b]) U (U' Tic),
where U' is the union over all k such that k ~ 3, X11c ~ b, Xtlc ~ a and

t=

k-l
----

2
k-2

2
k-4
----

2

if k is odd.

if k == 0 (mod 4),

if k == 2 (mod 4),

Tic = {2 cos(2njjk) I 0 ~ j ~ kj2,
(j, k) = l},

Xii = 2 cos(2n'i/J). ([7], 5.5).

(f) Let y = [a] + 2. Then if b - y ~ 2, we obtain Pea, b) upon
translating P(a - y, b - y) by y; that is, pea, b) = P(a - y, b - y) + y.
Since P(a - y, b - y) is identified in (e) above, pea, b) is identified in this
case [7, 5.7].

ApPROXIMABLE FUNCTIONS AND BEST ApPROXIMATIONS

A fundamental relationship between approximable functions and best
approximations is clearly demonstrated in the following theorem:

THEOREM 1. Iff is approximable on [a, b], then either fE Q(Z) or there
does not exist a best approximation to f on [a, b].

Proof. Suppose f is not in Q(Z) but is approximable on [a, b1- Assume
there exists a best approximation, Qo , to f on [a, b]. Choose X oE [a, b] such
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that f(xo) =F Qo(xo), and let TJ = t If(xo) - Qo(xo)I > 0. Then for any
Q E Q(Z), lif - Q II ?o lif - Qo II ?o If(xo) - Qo(xo)I > TJ > 0. This, how
ever, contradicts the approximability off on [a, b].

The construction of an approximable function from an arbitrary given
continuous function is now considered.

THEOREM 2. Let b - a < 4 and let L(x) be the Lagrange interpolation
polynomial to f in lea, b). (For lea, b) = 1>, set L(x) == 0.) Then g(x) ==
f(x) - L(x) is approximable on [a, b].

Proof g(x) = °for all x E lea, b). Thus, g(x) is matchable on lea, b)
and, hence, approximable on [a, b].

If L of Theorem 2 is replaced by any function t E C(a, b) such that
t(x) = f(x) for all x E lea, b), thenf - t is also approximable on [a, b].

THEOREM 3. Let b - a < 4. Then f is approximable on [a, b] if and only
if L is approximable on [a, b].

This follows at once from Theorem 2.
An immediate consequence of result (b) above is that if b - a < 4, then

f(x) is approximable if and only if L(x) has integral coefficients. Thus, if
b - a < 4 and if there exists a sequence {Qi} such that Qi E Q(Z) and
II Qi - L II ~°as i~ 00, then L E Q(Z).

ON BEST ApPROXIMAnONS

THEOREM 4. A best approximation to a continuous function is, in general,
not unique.

Proof Let [a, b] = [0, 1],j(x) = -x + t, Ql(X) = 0, and Q2(X) = 2f(x).
Then Ilf - Ql II = Ilf - Q211 = t· Now let Q(x) = L~~o aixi be any poly
nomial with integral coefficients. Then Ilf - Q II ?o If(O) - L~~o aiOi I =
I t - ao I ?o t, since ao is an integer. Hence, both Ql and Q2 are best approxi
mations to f on [0, 1].

The question of existence of best approximations cannot be answered as
easily as that of uniqueness. However, some insight into the existence
problem can be achieved by studying the question: If Q is an approximation
to f, what general procedures could be used to hopefully improve upon Q?
The following theorem and its proof contain an indication in this direction.

THEOREM 5. Suppose b - a < 4, lea, b) =F 1>; let Q be an arbitrary
element of Q(z), and set p. = maxJ(a,b) I f(x) - Q(x)[. Then, for each TJ > 0,
there exists a polynomial Pr, in Q(Z) such that Ilf - Pr, II - TJ ~ p..
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Proof Let TJ > 0 be arbitrary but fixed. Define a function G(x) as follows:
(1) G(x) = f(x) - Q(x) throughout E = {x II f(x) - Q(x) I ~ f.L + (TJ/2)},
(2) G(x) = 0 throughout Eo = J(a, b) U {x If(x) - Q(x) = O}, and (3) G(x)
is linear on each of the disjoint intervals whose union is E* = [a, b] - Eo - E.
By a proper definition in (3), G will be continuous in [a, b). Also, if x belongs
to [a, b] - E, then f(x) - Q(x) and G(x) have the same sign; hence
I f(x) - Q(x) - G(x)! ~ max{1 f(x) - Q(x)l, I G(x)l} ~ f.L + (TJ/2). Also, G
is matchable on J(a, b) and thus approximable on [a, b]; hence, there exists
Q~ in Q(Z) such that II G(x) - Q~(x)11 < TJ/2. Therefore,

Ilf(x) - (Q~(x) + Q(x))11 ~ Ilf(x) - Q(x) - G(x)11 + II G(x) - Q~(x)11

< f.L + (TJ/2) + TJ/2 = f.L + TJ·

Theorem 5 shows that if f.L < Ilf - Q II, there exists a better approxi
mation to f in Q(Z). This theorem will also be used to prove the following:

THEOREM 6. Let b - a < 4, f ¢ Q(Z), and let Qo be a best approximation
tof Then: (1)fis not approximable on [a, b]; (2) maxJ(a,b) If(x) - Qo(x) [ =
Ilf- Qoll·

Proof (1) follows from Theorem 1. Also, by Theorem 2, J(a, b) =I=- cP.
By Theorem 5, for each TJ > 0 there exists some P~ in Q(Z) such that
Ilf - P~ II - TJ ~ maxJ(a,b) If(x) - Qo(x)l. Hence, Ilf - Qo II ~ I!f - P~ II ~
maxJ(a,b) If(x) - Qo(x) I + TJ· Since TJ > 0 is arbitrary,

Ilf - Qo II = max If(x) - Qo(x)l.
J(a.b)

Theorem 6 identifies some of the points of maximum deviation of a best
approximation: a best approximation assumes its maximum deviation fromf
on some subset of the set of critical points of the interval. In addition, this
theorem can sometimes be used to determine that a particular approximation
is not best.

THEOREM 7. Let b - a < 4 and suppose f is not approximable on [a, b].
Then there exists an TJo > 0 such that for every Q in Q(Z), If(x) - Q(x)1 > TJo
for some x in J(a, b).

Proof Since f is not approximable on [a, b], there exists an TJ' > 0 such
that for each Q in Q(Z), If(x) - Q(x) I > TJ' for some x in [a, b]. Assume
that for each TJ > 0 there exists Q~ in Q(Z) such that If(x) - Q~(x)1 ~ TJ
for all x in J(a, b). Take TJ = 7]'/2. By Theorem 5, there exists P~ in Q(Z) such
that Ilf - P~ II - TJ ~ maxJ(a,b) If(x) - Q" I ~ TJ· Thus Ilf - P" 1\ ~ 2T1 = TI';
but this contradicts the first part of the proof.
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THEOREM 8. There exists an [a, b] with b - a < 4, and an f belonging to
qa, b) such thatfis not approximable on [a, b], and such that there does not
exist a best approximation to f on [a, b].

Proof Define functionsj, g on [-t, i] by

g(x) = l+x
1

I-x

for x E [0, H

for x E [-i, 0],

and f(x) = g(x) - en. Since J(-t, t) = {O} [7, p. 317, 5.5 Theorem] and
g(O) = 1, g(x) is approximable on [-t, H By Theorem 3,jis not approxi
mable there. Suppose there exists a best approximation Qo to f on [-t, H
Since g is approximable, for each YJ > 0 there exists Qn in Q(Z) such that
Ig(x) - Qn(x)I = [f(x) + 1 - Qn(x)1 < YJ throughout [-t, H Hence, for
every YJ > 0, IIf - Qo II :(; Ilf - Qn II < YJ + en, and so, Ilf - Qo II :(; t·
Since f(O) = f, we must have Qo(O) = 1; consequently, Ilf - Qo II = 1-

There exists a nondegenerate interval [-d, d] h [-t, t] such that in each
of [-d, 0], [0, d] exactly one of the following holds: (I) Qo is constant,
(2) Qo is strictly increasing, (3) Qo is strictly decreasing. However, since f
is strictly decreasing on [0, H Q is strictly decreasing on [0, d] since in all
other cases we would have, throughout [0, d],

If(x) - Qo(x)I > If(O) - Qo(O)I = t,
which would contradict the equality Ilf - Qo II = 1. Similarly, Qo is strictly
increasing on [-d, 0]. Hence, Qo has a relative maximum at x = O. There
exists an h, 0 < h :(; d, such that throughout (0, h) we have -t :(; Qo'(x) < 0
and -1 <f'(x) = -1/(1 + X)2 :(; -1. Thus, throughout (0, h),

(Qo(x) - f(x)), > 0,

and therefore Ilf - Qo II ~ Qo(h) - f(h) > Qo(O) - f(O) = t, contradicting
the equality Ilf - Qo II = 1·
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