JOURNAL OF APPROXIMATION THEORY 4, 357-362 (1971)

Approximation of Continuous Functions by Polynomials with Integral Coefficients

GEORGE D. ANDRIA

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 Communicated by Oved Shisha

Received January 20, 1969; revised March 8, 1970

INTRODUCTION

Let Q(Z) be the set of all polynomials with integral coefficients, let $-\infty < a < b < \infty$, let C(a, b) denote the set of all real valued continuous functions defined on [a, b], and let $f \in C(a, b)$ be arbitrary but fixed.

DEFINITION 1. (a) f is approximable on [a, b] if and only if for each $\eta > 0$ there exists a $Q \in Q(Z)$ such that $|f(x) - Q(x)| < \eta$ for all $x \in [a, b]$.

(b) f is matchable on a set S if and only if $S \subseteq [a, b]$, and there exists a $Q \in Q(Z)$ such that f(x) = Q(x) for all $x \in S$.

(c) For each $g \in C(a, b)$, define $||g|| = \max_{a \le x \le b} |g(x)|$.

(d) Let $U(a, b) = \{Q \mid Q \in Q(Z), 0 \le Q(x) < 1 \text{ for all } x \text{ in } [a, b], Q \neq 0\}$. If $U(a, b) \neq \phi$, then let $J(a, b) = \{x \mid x \in [a, b], Q(x) = 0 \text{ for all } Q \in U(a, b)\}$ and call the points of J(a, b) critical points of [a, b].

The general question to be investigated can be stated as follows: does there exist a $Q_0 \in Q(Z)$ such that $||f - Q_0|| \leq ||f - Q||$ for all $Q \in Q(Z)$?; such a Q_0 would be called a best approximation to f on [a, b]. In this paper, results concerning (1) the existence of Q_0 , (2) the uniqueness of Q_0 , (3) the construction of Q_0 , and (4) the magnitude of $||f - Q_0||$ will be developed.

The related topic of the existence of arbitrarily good approximations to f by elements of Q(Z) has a rather long history. The problem was first raised by J. Pál [11] for the case in which $[a, b] = [-\alpha, \alpha], |\alpha| < 1$. He has shown that f(0) = an integer is a necessary and sufficient condition for the approximability of f on $[-\alpha, \alpha]$. S. Kakeya [8] studied the problem for the interval [-1, 1], and Fekete and Lukács (in 1916, unpublished; see [3]) considered the problem for arbitrary intervals [a, b]. Y. Okada [10], S. N. Bernstein [2], L. Kantorovič [9], M. Fekete [3, 4, 5, and 6], I. Yamamoto [12], E. Hewitt

ANDRIA

and H. Zuckerman [7], and G. Andria [1] have also studied this problem and related ones.

Several known results will now be stated for later reference:

(a) Let $U(a, b) \neq \phi$; then J(a, b) is finite. Furthermore, f is approximable on [a, b] if and only if it is matchable on J(a, b) ([7], Theorem 2.6).

(b) If $b - a \ge 4$, then f is approximable if and only if it coincides on [a, b] with an element of Q(Z) ([3], Theorem 1). If b - a < 4, then U(a, b) is nonvoid (follows from [5], Theorem XIV), J(a, b) is an n-point set $(n \ge 0)$ and f is approximable if and only if the unique polynomial of degree n - 1 matching f on J(a, b) has integral coefficients ([7], Theorem 4.3). (The unique polynomial of degree -1 is 0.)

(c) Let J'(a, b) be the set of zeros of the polynomials $Q^* \in Q(Z)$ having leading coefficient one and all their zeros in [a, b].

(d) If b - a < 4, then J(a, b) = J'(a, b) ([7], 3.10).

(e) Let $-2 \leq a < b \leq 2$. Then $J'(a, b) = (\{-2, 2\} \cap [a, b]) \cup (\bigcup' T_k)$, where \bigcup' is the union over all k such that $k \geq 3$, $x_{1k} \leq b$, $x_{\ell k} \geq a$ and

$$\ell = \begin{cases} \frac{k-1}{2} & \text{if } k \text{ is odd,} \\ \frac{k-2}{2} & \text{if } k \equiv 0 \pmod{4}, \\ \frac{k-4}{2} & \text{if } k \equiv 2 \pmod{4}, \end{cases} \quad T_k = \{2 \cos(2\pi j/k) \mid 0 \le j \le k/2, \\ (j,k) = 1\}, \end{cases}$$

 $x_{ij} = 2\cos(2\pi i/j)$. ([7], 5.5).

(f) Let $\gamma = [a] + 2$. Then if $b - \gamma \leq 2$, we obtain J'(a, b) upon translating $J'(a - \gamma, b - \gamma)$ by γ ; that is, $J'(a, b) = J'(a - \gamma, b - \gamma) + \gamma$. Since $J'(a - \gamma, b - \gamma)$ is identified in (e) above, J'(a, b) is identified in this case [7, 5.7].

APPROXIMABLE FUNCTIONS AND BEST APPROXIMATIONS

A fundamental relationship between approximable functions and best approximations is clearly demonstrated in the following theorem:

THEOREM 1. If f is approximable on [a, b], then either $f \in Q(Z)$ or there does not exist a best approximation to f on [a, b].

Proof. Suppose f is not in Q(Z) but is approximable on [a, b]. Assume there exists a best approximation, Q_0 , to f on [a, b]. Choose $x_0 \in [a, b]$ such

358

that $f(x_0) \neq Q_0(x_0)$, and let $\eta = \frac{1}{2} |f(x_0) - Q_0(x_0)| > 0$. Then for any $Q \in Q(Z)$, $||f - Q|| \ge ||f - Q_0|| \ge |f(x_0) - Q_0(x_0)| > \eta > 0$. This, however, contradicts the approximability of f on [a, b].

The construction of an approximable function from an arbitrary given continuous function is now considered.

THEOREM 2. Let b - a < 4 and let L(x) be the Lagrange interpolation polynomial to f in J(a, b). (For $J(a, b) = \phi$, set $L(x) \equiv 0$.) Then $g(x) \equiv f(x) - L(x)$ is approximable on [a, b].

Proof. g(x) = 0 for all $x \in J(a, b)$. Thus, g(x) is matchable on J(a, b) and, hence, approximable on [a, b].

If L of Theorem 2 is replaced by any function $\ell \in C(a, b)$ such that $\ell(x) = f(x)$ for all $x \in J(a, b)$, then $f - \ell$ is also approximable on [a, b].

THEOREM 3. Let b - a < 4. Then f is approximable on [a, b] if and only if L is approximable on [a, b].

This follows at once from Theorem 2.

An immediate consequence of result (b) above is that if b - a < 4, then f(x) is approximable if and only if L(x) has integral coefficients. Thus, if b - a < 4 and if there exists a sequence $\{Q_i\}$ such that $Q_i \in Q(Z)$ and $||Q_i - L|| \to 0$ as $i \to \infty$, then $L \in Q(Z)$.

ON BEST APPROXIMATIONS

THEOREM 4. A best approximation to a continuous function is, in general, not unique.

Proof. Let $[a, b] = [0, 1], f(x) = -x + \frac{1}{2}, Q_1(x) = 0$, and $Q_2(x) = 2f(x)$. Then $||f - Q_1|| = ||f - Q_2|| = \frac{1}{2}$. Now let $Q(x) = \sum_{i=0}^n a_i x^i$ be any polynomial with integral coefficients. Then $||f - Q|| \ge |f(0) - \sum_{i=0}^n a_i 0^i| = |\frac{1}{2} - a_0| \ge \frac{1}{2}$, since a_0 is an integer. Hence, both Q_1 and Q_2 are best approximations to f on [0, 1].

The question of existence of best approximations cannot be answered as easily as that of uniqueness. However, some insight into the existence problem can be achieved by studying the question: If Q is an approximation to f, what general procedures could be used to hopefully improve upon Q? The following theorem and its proof contain an indication in this direction.

THEOREM 5. Suppose b - a < 4, $J(a, b) \neq \phi$; let Q be an arbitrary element of Q(z), and set $\mu = \max_{J(a,b)} |f(x) - Q(x)|$. Then, for each $\eta > 0$, there exists a polynomial P_n in Q(Z) such that $||f - P_n|| - \eta \leq \mu$.

ANDRIA

Proof. Let $\eta > 0$ be arbitrary but fixed. Define a function G(x) as follows: (1) G(x) = f(x) - Q(x) throughout $E = \{x \mid | f(x) - Q(x)| \ge \mu + (\eta/2)\}$, (2) G(x) = 0 throughout $E_0 = J(a, b) \cup \{x \mid f(x) - Q(x) = 0\}$, and (3) G(x)is linear on each of the disjoint intervals whose union is $E^* = [a, b] - E_0 - E$. By a proper definition in (3), G will be continuous in [a, b]. Also, if x belongs to [a, b] - E, then f(x) - Q(x) and G(x) have the same sign; hence $| f(x) - Q(x) - G(x)| \le \max\{| f(x) - Q(x)|, | G(x)|\} \le \mu + (\eta/2)$. Also, G is matchable on J(a, b) and thus approximable on [a, b]; hence, there exists Q_n in Q(Z) such that $|| G(x) - Q_n(x)|| < \eta/2$. Therefore,

$$\|f(x) - (Q_{\eta}(x) + Q(x))\| \le \|f(x) - Q(x) - G(x)\| + \|G(x) - Q_{\eta}(x)\| < \mu + (\eta/2) + \eta/2 = \mu + \eta.$$

Theorem 5 shows that if $\mu < ||f - Q||$, there exists a better approximation to f in Q(Z). This theorem will also be used to prove the following:

THEOREM 6. Let b - a < 4, $f \notin Q(Z)$, and let Q_0 be a best approximation to f. Then: (1) f is not approximable on [a, b]; (2) $\max_{J(a,b)} |f(x) - Q_0(x)| = ||f - Q_0||$.

Proof. (1) follows from Theorem 1. Also, by Theorem 2, $J(a, b) \neq \phi$. By Theorem 5, for each $\eta > 0$ there exists some P_{η} in Q(Z) such that $||f - P_{\eta}|| - \eta \leq \max_{J(a,b)} |f(x) - Q_0(x)|$. Hence, $||f - Q_0|| \leq ||f - P_{\eta}|| \leq \max_{J(a,b)} |f(x) - Q_0(x)| + \eta$. Since $\eta > 0$ is arbitrary,

$$||f - Q_0|| = \max_{f(a,b)} |f(x) - Q_0(x)|.$$

Theorem 6 identifies some of the points of maximum deviation of a best approximation: a best approximation assumes its maximum deviation from f on some subset of the set of critical points of the interval. In addition, this theorem can sometimes be used to determine that a particular approximation is not best.

THEOREM 7. Let b - a < 4 and suppose f is not approximable on [a, b]. Then there exists an $\eta_0 > 0$ such that for every Q in Q(Z), $|f(x) - Q(x)| > \eta_0$ for some x in J(a, b).

Proof. Since f is not approximable on [a, b], there exists an $\eta' > 0$ such that for each Q in Q(Z), $|f(x) - Q(x)| > \eta'$ for some x in [a, b]. Assume that for each $\eta > 0$ there exists Q_n in Q(Z) such that $|f(x) - Q_n(x)| \le \eta$ for all x in J(a, b). Take $\eta = \eta'/2$. By Theorem 5, there exists P_n in Q(Z) such that $||f - P_n|| = \eta \le \max_{J(a,b)} |f(x) - Q_n| \le \eta$. Thus $||f - P_n|| \le 2\eta = \eta'$; but this contradicts the first part of the proof.

THEOREM 8. There exists an [a, b] with b - a < 4, and an f belonging to C(a, b) such that f is not approximable on [a, b], and such that there does not exist a best approximation to f on [a, b].

Proof. Define functions f, g on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ by

$$g(x) = \begin{cases} \frac{1}{1+x} & \text{for } x \in [0, \frac{1}{2}], \\ \frac{1}{1-x} & \text{for } x \in [-\frac{1}{2}, 0], \end{cases}$$

and $f(x) = g(x) - (\frac{1}{4})$. Since $J(-\frac{1}{2}, \frac{1}{2}) = \{0\}$ [7, p. 317, 5.5 Theorem] and g(0) = 1, g(x) is approximable on $[-\frac{1}{2}, \frac{1}{2}]$. By Theorem 3, f is not approximable there. Suppose there exists a best approximation Q_0 to f on $[-\frac{1}{2}, \frac{1}{2}]$. Since g is approximable, for each $\eta > 0$ there exists Q_η in Q(Z) such that $|g(x) - Q_\eta(x)| = |f(x) + \frac{1}{4} - Q_\eta(x)| < \eta$ throughout $[-\frac{1}{2}, \frac{1}{2}]$. Hence, for every $\eta > 0$, $||f - Q_0|| \le ||f - Q_\eta|| < \eta + (\frac{1}{4})$, and so, $||f - Q_0|| \le \frac{1}{4}$. Since $f(0) = \frac{3}{4}$, we must have $Q_0(0) = 1$; consequently, $||f - Q_0|| = \frac{1}{4}$.

There exists a nondegenerate interval $[-d, d] \subseteq [-\frac{1}{2}, \frac{1}{2}]$ such that in each of [-d, 0], [0, d] exactly one of the following holds: (1) Q_0 is constant, (2) Q_0 is strictly increasing, (3) Q_0 is strictly decreasing. However, since f is strictly decreasing on $[0, \frac{1}{2}]$, Q is strictly decreasing on [0, d] since in all other cases we would have, throughout [0, d],

$$|f(x) - Q_0(x)| > |f(0) - Q_0(0)| = \frac{1}{4}$$

which would contradict the equality $||f - Q_0|| = \frac{1}{4}$. Similarly, Q_0 is strictly increasing on [-d, 0]. Hence, Q_0 has a relative maximum at x = 0. There exists an $h, 0 < h \leq d$, such that throughout (0, h) we have $-\frac{1}{2} \leq Q_0'(x) \leq 0$ and $-1 \leq f'(x) = -1/(1+x)^2 \leq -\frac{3}{4}$. Thus, throughout (0, h),

$$(Q_0(x) - f(x))' > 0,$$

and therefore $||f - Q_0|| \ge Q_0(h) - f(h) > Q_0(0) - f(0) = \frac{1}{4}$, contradicting the equality $||f - Q_0|| = \frac{1}{4}$.

References

- 1. G. ANDRIA, On Integral Polynomial Approximation, thesis, St. Louis University, 1968.
- S. N. BERNSTEIN, Sobranie Sočinenii I, Izdatel'stvo Akademii Nauk SSSR, 468–471, 517–519, 1952.
- 3. M. FEKETE, Approximations par polynomes avec conditions diophantiennes, C. R. Acad. Sci. Paris 239 (1954), 1337-1339, 1455-1457; (published in greater detail in Hebrew: Riveon Lematematika 9 (1955), 1-12, Jerusalem, Israel, with an English summary).

ANDRIA

- M. FEKETE, Über den transfiniten Durchmesser ebener Punktmengen, Math. Z. 32 (1930), 108-114, 215-221; 37 (1933), 635-646.
- 5. M. FEKETE, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, *Math. Z.* 17 (1923), 228–249.
- 6. M. FEKETE, Über die Wertverteilung bei ganzzahligen Polynomen, Math. Z. 31 (1930), 521–526.
- 7. E. HEWITT AND H. S. ZUCKERMAN, Approximation by polynomials with integral coefficients, a reformulation of the Stone-Weierstrass theorem, *Duke Math. J.* 26 (1959), 305-324.
- 8. S. KAKEYA, On Approximate Polynomials, Tôhoku Math. J. 6 (1914-1915), 182-186.
- L. V. KANTOROVIČ, Neskol'ko zamečanii o približenii k funkciyam posredstvom polinomov s celymi koefficientami, *Izv. Akad. Nauk SSSR* (Otdel. mat. i est. Nauk) (1931), 1163–1168.
- Y. OKADA, On approximate polynomials with integral coefficients only, *Tôhoku Math. J.* 23 (1923), 26–35.
- 11. J. PAL, "Zwei kleine Bemerkungen," Tôhoku Math. J. 6 (1914-1915), 42-43.
- 12. I. YAMAMOTO, A remark on approximate polynomials and Eine Bemerkung über algebraische Gleichungen, *Tôhoku Math. J.* 33 (1931), 21-25.